Multi-Input Telepresence and Shared Environment

Andrew Korzeniewski*
Michigan Technological University

ABSTRACT

The shared interaction experience that we created consists of a user
wearing a NVIS nVisor ST-60 Head-Mounted Display (HMD) and
a user using an XBox Kinect to interact with a shared virtual en-
vironment while being able to be physically present (telepresence)
in separate locations. To create this virtually immersive effect, the
Kinect user has a 3D avatar or virtual representation visible to the
HMD user such that it allows the two users to interact with the vir-
tual environment. Utilizing the OpenNI API and PrimeSenseNITE
Middleware, the Flexible Action and Articulated Skeleton Toolkit
(FAAST) streams the joints of the skeleton that are detected with
the Kinect to Vizard, using VRPN, to display on the HMD. The
users cooperatively navigate a custom maze to achieve a common
goal to receive a reward. We learned that immersive virtual en-
vironments are significantly more challenging to work with when
relying on non-standard computer input devices, i.e. HMDs and
motion trackers rather than a keyboard and mouse. We found that
our implementation of telepresence needs more refinement before
it can be applied to more applications.

1 INTRODUCTION
1.1 Motivation

The potential for a wide range of interactive applications gave us the
idea to do this project. We were most excited in exploring game-
like tasks. During our brainstorming, we came up with several ideas
for interactive tasks. Some of these include plowing snow and mea-
suring the amount plowed, pushing boxes into a pit so a user could
walk across, and have one user load a projectile into a gun and have
the other user shoot it at a target. Despite these good ideas, we
were not comfortable with their dependability, so we chose to im-
plement a maze-navigating task to reliably demonstrate the overall
mechanics of our final design.

1.2 Resources

The two main interactive devices that we used are an Xbox Kinect
and an NVIS nVisor ST-60 HMD. The HMD uses WorldViz Pre-
cision Point Tracker (PPT) [5] for position and orientation infor-
mation and WorldViz Vizard [6] to render graphics. Functionality
of the Kinect is provided by a combination of OpenNI [1], Prime-
SenseNITE [2], and FAAST [4]. Because the Kinect user is in front
of a stationary computer, this user is in a semi-fixed position to ac-
count for the limitations of the Kinect. To comply with Vizard and
PPT, all computers run Windows.

2 IMPLEMENTATION
2.1 FAAST and Vizard

Body point position information was acquired using the third-party
toolkit FAAST. We used VRPN to transfer data point position in-
formation between FAAST and Vizard. As a bonus for using

*e-mail: apkorzen@mtu.edu
Te-mail: rdpringl@mtu.edu
fe-mail: jadevill@mtu.edu

Richard D. Pringle IIf
Michigan Technological University

Jeremy DeVillers*
Michigan Technological University

VRPN, we obtained the ability to have remote data streams, since
VRPN is a network protocol that uses TCP/IP to interface between
client/server VRPN implementations. A screenshot showing the
FAAST application while registering a particular user’s skeletal
joints is shown in Figure 1. As a proof of concept to learn how
to create objects with Vizard, we created a simple cube in the world
and removed the object as we became more adept at working with
Vizard.

M Flexible Action and Articulated Skeleton Toolkit

Sensor [Skeleton | Actons

Depth Camera Resolution

Figure 1: FAAST with the Skeleton detected.

A basic skeleton was then constructed in Vizard using the data
points obtained from the Kinect. In our original design, we created
a universal movement paradigm but later switched to a different
movement method, both of which are discussed later in Section 2.3.
The skeleton was represented by placing spheres at the data point
locations in the virtual environment as shown in Figure 2. However,
due to the inexactness of image processing that the Kinect does
to determine joint locations, some of the joints of the skeleton of
the Kinect user appear to not be completely stationary and may
jump around to some degree even if the user is perfectly still. We
discuss Filtering in Section 7.1 as future work to possibly resolve
this problem. Using the joint information we constructed limbs to
join the appropriate joints to make a semi-realistic avatar that is
shown in Figure 2.

From there, we were confident that we had enough data to work
on something more useful. One goal we had was to allow both the
Kinect user and HMD user to interact with objects in the virtual en-
vironment. Therefore, we implemented custom methods for adding
objects to the virtual environment for the users to interact with.
Once custom methods for objects were implemented, we thought
the next best step would be to allow the Kinect user to carry an ob-
ject. We made this decision because until this point in the project
we concentrated on the Kinect user being in the virtual environ-
ment. We believed that using the Kinect user’s hands to carry a vir-
tual object and having that object interacting with its environment
was an intuitive next step.

Figure 2: Vizard with the Skeleton (left) and Avatar (right).

2.2 Physics and its Moments
2.2.1 Custom Collision Detection

In order to allow the Kinect user to pick up objects, we needed to
be able to detect collisions between the Kinect user’s hands and the
virtual object the user wanted to pick up. Vizard has methods for
using its physics engine to do collision detection but using the built
in system did not provide us with a means to do what we needed.
Therefore, we implemented a spherical-based collision system. We
have two classes of objects: spheres and cubes. Both classes of
objects use a similar implementation of radius-based spherical col-
lision detection but the objects are categorized into two different
classes simply because of the specific implementation details. Fig-
ure 3 depicts the collision detection schema.

Not Colliding

Colliding
Figure 3: Collision Detection Schema.

Using this method for collision detection, if both of the Kinect
user’s hands are colliding with an object, then the Kinect user grabs
the object (Figure 4) and the center of that object is set to the mid-
point between the Kinect user’s hands. This requires both of the
Kinect user’s hands to grab an object and if at any time both hands
are not colliding with the object, the object reacts to its environment
without the impact of the Kinect user’s hands.

2.2.2 Inertia and Gravity

After the Kinect user was able to interact with objects, it seemed
natural to try and throw objects. This required velocity and ac-
celeration information to correctly calculate projectile motion. We
obtained the velocity by sampling a number of consecutive frames
to determine the velocity and direction that the user is propelling
an object. To add to the realism and to take advantage of the native

Figure 4: Kinect User Holding a Cube.

physics engine that Vizard implements, we added gravity effects to
objects. Between calculating the velocity of an object when it is
released and applying the forces of gravity, we achieved a some-
what realistic feel of throwing objects as shown in Figure 5. By
extension, using Vizard’s native physics engine allows an object to
respond to other objects and its environment as shown in Figures 6
and 7.

Figure 5: Throwing an object.

Figure 6: Cubes Falling and Starting to Bounce.

Figure 7: Cubes from Figure 6 Bouncing and Ricocheting.

2.2.3 HMD and Kinect: Fatal Interaction

Since the Kinect user could interact with objects in the virtual en-
vironment, we decided to add the ability for the HMD user to keep
things fair. However, the difference in details is that we only gave
the HMD user one hand because the tracking system uses LED
lights as data points and it seemed to jump between different sensor
channels depending on the occlusion of the cameras. To that end,
we allowed the HMD to grab objects in the virtual environment if
the one hand was colliding with the object. In the event that both
the Kinect user and the HMD user wanted to grab the same object
we had to develop a method that would maintain the perception of
reacting the same way that two people would interact in the event
that they wanted to both grab the same object.

The method we developed was to use the three different hands as
points on a triangle, then find the centroid of those points to update
the origin of the object. As the users interact with the object, the
origin automatically changes to reflect those interactions. There-
fore, if both the Kinect user and the HMD user are not colliding
with the same object, it reverts back to normal collision behavior.
This allows the effect of users giving and taking objects.

2.3 Movement Paradigm

The first design of the movement paradigm was an absolute move-
ment system that was designed so the Kinect user’s movements
and HMD user’s movements in the real world were the exact same
as the actions performed in the virtual world. This provided us
with a good schema to test and develop our logic for the rest of
our project. However, when exploring a virtual environment that is
larger than the physical environment that is being used, this move-
ment paradigm falls short.

We decided to revisit our movement paradigm and chose a rela-
tive position, vector-based movement system similar to the WASD
or arrow key movement system commonly used with a computer
keyboard. The farther the distance that a user moves from his ori-
gin, the faster that user will move in a vector direction using the
origin as the tail of the vector and the user’s position as the head
of the vector. We liked this movement system better because it al-
lowed us to navigate a larger virtual space than what was available
in the physical space.

3 DEMONSTRATING TELEPRESENCE
3.1 Cooperative User Task

We created all of this functionality so that two users could inter-
act in a virtual environment. We chose a garden maze, as shown
in Figure 8, as the task to demonstrate the features that should be
available in any telepresence gaming application. It requires both
users to navigate the maze from the starting location to user specific
finish locations. When the goals are achieved we reward the users
with a surprise. The surprise involves the maze disappearing and
the cubes falling from the sky and exploding, as shown in Figures
6and 7.

3.2 Virtual World Environment

The ground, sky, and maze were all textured. The boxes were col-
ored using the basic Vizard color functionality. A simple repeating
grass texture was mapped to the 100m x 100m ground. The repeat-
ing grass texture was also mapped to the walls of the maze. The
height of the walls of the maze was 3m. The sky box was textured
using a cube map of a blue sky with clouds. The sky was 100m x
100m placed 50m above the ground.

4 GoOALS

From small to large, we highlighted goals that we achieved to help
guide us through development.

Figure 8: The Garden Maze with the Green Arrow showing the start
location, the Red Square representing the Kinect finish location, and
the Blue Square representing the HMD finish location.

4.1 Obtained Goals

We created an object in the virtual environment and used the po-
sition information of an LED tracker to define an object’s position
in the virtual space. We used the tracking information provided
by FAAST to display objects at proper joints to construct an avatar.
The tracking data was used from FAAST to update the Kinect user’s
avatar in real-time to allow visual confirmation of physical move-
ment. Interaction with objects in the shared virtual environment
was enabled for the HMD user and the Kinect user. To extend this
interaction, we enabled the HMD user and the Kinect user to simul-
taneously interact with the environment at the same time. Once all
of this was put together, we worked on our main goal to create a
game using both the HMD user and the Kinect user to assist each
other in order to explore it.

4.2 Unobtained Goals

We would have liked to get a display for the Kinect user that would
display the avatar of the HMD user. However, extracting position
information from Vizard was not achievable, nor could we write an
OpenGL program within a reasonable amount of time. To achieve
more immersion within the virtual environment, we would have
liked to implement spatially-accurate sound eftects but we chose to
pursue other priorities in its place. We wanted to explore displaying
the Kinect user in a third-person view so that the Kinect user could
see his avatar and the HMD user’s avatar in the virtual environment.
However, by the time we reached this step in our project, construct-
ing a custom VRPN server/client implementation seemed to be too
difficult to finish within the time allotted, and instead we pursued
other goals.

5 RESPONSIBILITIES

The setting up, handling, and maintenance of the Kinect was han-
dled by Richard throughout the project. Andy was in charge of
the maintenance and troubleshooting of the HMD the majority of
the time. Aside from the hardware handling, the responsibilities
were largely shared and worked on as a team. The majority of the
programming was handled by Richard as he had a lot of experi-
ence in Python. He also installed FAAST and the related Kinect
drivers. The other portion of the programming was completed by
Andy who knew the Vizard system and how to run PPT. Jeremy
mainly worked with debugging and helped figure out what needed
to be done to make the objects and scene work or appear correctly.

6 CONCLUSION

Overall, we believe that the project was a success and would recom-
mend others to expand on our findings. We had a working demon-
stration that we felt was representative of all of our hard work.
However, we would have liked to do more and Section 7 details
those areas of interest.

6.1 Reflection

Generally, the project contained a healthy amount of challenging
opportunities to keep our minds busy. We thought that it was a fun
project. Overall, we found that it is fairly easy to create an inter-
esting virtual environment. However, it is very difficult to refine
the environment so that it is immersive, convincing, yet still easy to
use. We all learned how to use Vizard and PPT. In addition, the use
of Python helped refine our programming skills.

6.2 Challenges

There were several aspects of the project that were tough to work
through. It was sometimes difficult to find meeting times with three
people on the team, especially towards the end of the semester.
We found that collision detection was fairly difficult because even
though Vizard had native support for colliding-object primitives,
they were not documented very well, requiring us to create custom
procedures. Multiple user interaction of a shared object in a vir-
tual environment was difficult, but necessary to implement because
it is a prevalent aspect of normal interaction between individuals.
Though we came up with an elegant solution for multiple users in-
teracting with the same object, we were unsure as to whether it was
the optimal solution, so it would be interesting to see what kind
of research has been done on this particular topic. Movement in a
confined space was also difficult, since our virtual environment was
much larger than the physical space. It was unclear as to the best
way to handle this type of movement, but once implemented it was
even harder to perfect. Physics was also something that we found
difficult to implement. Though Vizard has native physics, we still
needed to design our own procedures and structures to store the re-
lated information for throwing objects and calculating velocities. It
was also frustrating that the HMD tracking software, PPT, was not
completely stable, for reasons that we were unable to figure out.
It sometimes crashed multiple times per day as we were working.
Lastly, our HMD unit was out for repairs for several weeks of the
semester, so we were unable to demonstrate or test our project with
the actual HMD unit. As explained above, all of these were reme-
died eventually, but these highlight our most significant obstacles
we had to overcome.

6.3 What We Would Change

We discovered that designing an effective movement system for a
virtual environment was much more difficult than we anticipated.
We would have liked to work much more on this area and it would
be a higher priority if we could do the project again. Also, utilizing
more than one Kinect to track a user to avoid occlusion issues would
be another priority if we were to do this project again.

7 FUTURE WORK

With the system that we have developed in this project, there are a
number of other applications that we wanted to explore but due to
various constraints were unable to attempt.

7.1 Filtering

With the image-based skeleton detection that is employed by the
Kinect, the exact locations of particular joints for a person are not
always accurate but may change each frame based on the image
processing that is done. Therefore, the Kinect sometimes transmits
noticeable movement for the Kinect user even if they are standing

completely still. In the future, it would be very beneficial to im-
plement some type of filtering to remedy this issue. Specifically,
this would be a good application for Kalman filtering so the Kinect
avatar has a smoother appearance.

7.2 Using Multiple Kinects or HMDs

Due to hardware constraints, task complexity was limited for the
users in the virtual world because we were constrained by the quan-
tity of the Kinects and HMD units that we had access to work with.
Using just one Kinect to track a single user was problematic be-
cause it introduced occlusion-based issues that could be solved if
more than one Kinect was used to detect a person. We feel that this
would have increased the amount of immersion in the environment
that the user felt. Another application we wanted to explore was
having multiple HMDs or multiple Kinects to allow more than two
users to interact in the same virtual environment. This would add to
the functionality of telepresence for more than just two user tasks.
In our current implementation, the Kinect user needed to rely on the
HMD user for guidance in the virtual world because the Kinect user
did not have any means of viewing the virtual environment. There-
fore, in addition to helping immersion, using an HMD in place of
or with the Kinect would allow both users the ability to explore the
virtual environment independently and reliably.

7.3 More Tasks

We explored one of the tasks that telepresence has to offer, but in a
virtual environment many tasks that would normally be unrealistic
suddenly become practical. To that end, we wanted to explore other
effective means for using the Kinect and HMD for either coopera-
tive tasks or competitive tasks that utilize the users that share the
same virtual environment. This project explored a maze that two
users were required to navigate together as a team. In Section 1.1,
we discussed other ideas for possible cooperative tasks to explore
and in the future those would be something that we would like to
accomplish as well. Competitive tasks that would be interesting to
do would be an obstacle course or a downhill skiing application.

7.4 Different Methods of Movement

During this project, we investigated two different types of move-
ment systems. One was a system that mimicked real-world loca-
tions in the virtual world and the other is a relative, vector-based
method which are both discussed in Section 2.3. However, even
though these systems can be helpful in completing tasks effectively,
we wanted to explore other, possibly more intuitive, methods of
moving around in a virtual space that is larger than a physical space.
Implementing redirected walking as Razzaque et al. [3] described
would be an excellent next step to do in the future. This way a user
could walk naturally, more intuitively and not be required to worry
about any vector-based movement schema. An alternative to that
method of redirected walking could be to allow a user to walk nat-
urally but account for the physical obstacles in the room with either
virtual objects or by stopping movement in the virtual world and
automatically restarting the movement once the user has moved to
a safe, designated real-world position.

REFERENCES

[1] OpenNI Organization. OpenNI. http://openni.org/, Apr. 2011.

[2] PrimeSense Ltd. PrimeSense NITE Middleware. http://www.
primesense.com/?p=515/, Apr. 2011.

[3] S. Razzaque, Z. Kohn, and M. C. Whitton. Redirected walking. In
Proc. Eurographics 2001, pages 289-294, 2001.

[4] E. A. Suma, B. Lange, S. Rizzo, D. Krum, and M. Bolas. Flex-
ible Action and Articulated Skeleton Toolkit (FAAST). http://
projects.ict.usc.edu/mxr/faast/, Apr. 2011.

[5] WorldViz. Precision Point Tracker (PPT). http://www.
worldviz.com/products/ppt/index.html, Apr. 2011.

[6] WorldViz. Vizard. http://www.worldviz.com/products/
vizard/index_b.html, Apr. 2011.

