
Treemap Visualization of Wireless Network Activity

Andrew Korzeniewski∗

Michigan Technological University

Richard D. Pringle II†

Michigan Technological University

ABSTRACT

Network traffic monitoring of available and utilized bandwidth is
important to regulate network usage and to allocate sufficient band-
width to the hosts that need it. Common usages of network traffic
monitoring are for traffic prioritization and determining hosts with
unnecessary amounts of traffic. System administrators may want
the convenience of seeing exactly who is utilizing what portion of
the available network bandwidth. A treemap is an excellent visual
aid for displaying massive amounts of categorical data into a lim-
ited visual area. This tool intercepts wireless network traffic to cre-
ate a near real-time display of the amount of network bandwidth
that each host is consuming.

1 INTRODUCTION

Using treemaps is a popular method for visualizing hierarchical
data. They can effectively display the hierarchy by recursively di-
viding the display area into rectangles [1]. We liked the treemap
concept as it allows an easy-to-read, first-glance view of massive
amounts of categorical data. This is important for a monitoring
tool because constant, dynamic network activity can be considered
a large-scale dataset. As such, this type of viewing can be useful to
occasionally verify network integrity.

Network traffic monitoring can be a difficult and resource-
consuming, but necessary task. We thought that an improved vi-
sual paradigm for network monitoring would be beneficial to make
analyzing network traffic faster and easier to read.

We wanted to explore the effectiveness of treemaps as a method
to visualize network traffic data. Being familiar with networks, we
thought that the ability to see who is using network bandwidth at a
given time would be useful. This may be useful to determine band-
width resource allocation across a given network to improve per-
formance and reduce congestion. Furthermore, this type of visual-
ization might aid in first response of network security attacks, such
as dynamic denial of service (DDoS). This can be used to quickly
determine which external services are most involved in the overall
activity of the network.

2 OVERVIEW

2.1 Motivation

We ultimately wanted to create a tool to easily explore and view
network traffic data. One attribute to ease the viewing of a changing
medium is stability. The importance of stability is covered more in
Section 5.1. We also wanted to add functionality to make it easier
to view the important aspects of network data which are bandwidth
usage and the ratio of upload/download bandwidth. Finally, in order
to use this program for monitoring purposes, we wanted to make it
real-time.

∗e-mail: apkorzen@mtu.edu
†e-mail: rdpringl@mtu.edu

2.2 Implementation

A perl script is used to drive the program. It first calls the Unix
utility tcpdump for network packet gathering. It hands off the data,
retrieved from tcpdump, to a java program for grouping and dis-
play. Thus, the tool is broken up into the following work flow steps:
packet gathering, data grouping, and treemap construction and vi-
sualization.

3 PACKET GATHERING AND PARSING

A wireless adapter is first configured to operate in monitoring mode.
This allows the adapter to be disassociated from any wireless net-
works, which enables passive viewing of any wireless data packets
on a given frequency in range of the adapter.

Tcpdump is used to sniff all available wireless traffic within
range, disassociated from any specific network. The information
that is available is interpreted by the perl script and only the rele-
vant pieces of information are then included in the output that will
be handed off to the java program. This output data includes a raw
unix timestamp, the source IP address, and the destination IP ad-
dress. The perl script filters out all other information associated
with each packet, however, adding port numbers to the informa-
tion or possibly other packet information requires trivial changes to
the perl script and involves changes to the java program. Changing
the output data to include more information would allow the imple-
mentation of more filtering options, but this is discussed more in
Section 6.

4 DATA GROUPING

4.1 Design

The java program reads from standard input to interpret the parsed
data from tcpdump. Since our goals included accepting real-time
input, this portion of the program runs in its own thread. Its purpose
is to fill a buffer with standard input data. When the buffer becomes
full or if the event dispatch thread requests data, the data is then
pushed into the main java program and analyzed so that it can be
added to the data structure.

The basic data structure we implement can be thought of in terms
of a dialog between people. Figure 1 shows the idea behind our data
structure. One host starts a conversation with another host, where
a given host may have conversations taking place simultaneously
with any number of other hosts.

A pair of hosts may only have at most one conversation between
them, and each conversation consists of one or more sentences.
Each host keeps a list of its conversations with other hosts. Each
sentence object carries a time window value and sent and received
traffic counts associated with it. This is shown in Figure 2.

A conversation object in practice can be thought of as a symmet-
ric relation, where given two hosts, A and B, and a conversation
between them, A’s sent traffic to B is going to be B’s received traf-
fic from A. To get the accumulated traffic counts for a host, the host
will query all of its conversations for their respective totals within
a user-specified time window based on a start and stop time. Upon
receiving a start and stop time from a host in a request for traffic
counts, each conversation uses the start and stop times to filter out
irrelevant sentences. This is also shown in Figure 2.



Figure 1: High-level design of data structure. Vertices are unique
Host objects and edges are unique Conversation objects

Figure 2: Conversations are a collection of sentences bounded by a
time window, shown in red. Figure shows conversation filtering based
on a user-specified time window.

4.2 Justification

This structure allows great flexibility in the design and customiza-
tion of the treemap representation. Flexibility is achieved because
a host’s data can be shown based on arbitrary time constraints for
the conversations it is having with other hosts. Customization is
achieved because the program is able to change the display of the
dataset to show it in various ways, including filtering hosts using
insignificant amounts of bandwidth. More details about flexibility
and customization are discussed in Sections 5 and 6.

5 TREEMAP VISUALIZATION

5.1 Layout

One of our design goals was to provide a stable layout for the net-
work traffic data. A layout is considered stable if during a redraw
the layout presents as little change as possible to the relative posi-
tion of elements from the previous display. Because of the random
nature of the data, we thought it was important for the layout to
be as stable as possible. The data is presented in a treemap by
using a spiral rendering algorithm that features acceptably low as-
pect ratios for readability and more importantly has better spacial
continuity between sequential renderings to aid smooth transitions
between renderings [1].

Determined by the view, the treemap is partitioned into a set of
IP addresses. Partition size is based on the amount of bandwidth in
use by each IP address shown, where the larger the area the more
bandwidth that host is utilizing. Color is based on shades of red

and green, where a deeper shade of red signifies more data has been
uploaded and a deeper shade of green signifies more data has been
downloaded. For more detail about the color scale, see Section
5.4.1.

Each host is sub-divided into partitions. Assume a host, A. Each
of A’s partitions represents a different host that has used bandwidth
with A for a connection. Since these sub-partitions are not initially
shown when a host is selected in the treemap, all of the opposite
IP address partitions related with that IP address will be displayed
appropriately. This is described more in Section 5.3.3. The sizing
and coloring of a particular sub-partition follows the same rules as
its parent partition.

5.2 Learning Experience

Our original design as shown below in Figure 3 and Figure 4 show
the need for more functionality.

Figure 3: Spiral treemap without skewed hosts.

Figure 4: Spiral treemap with skewed hosts.

Figure 3 shows our basic implementation of the spiral treemap
as it is discussed in [1]. However, as discussed in Section 5.4, we



needed more functionality to better achieve our goals. This was
not due to the inadequacy of the spiral treemap design but rather
because of how we wanted to interpret the same dataset multiple
ways using the spiral treemap design. For example, Figure 4 shows
the treemap with very many hosts that may or may not require a
significant portion of the screen area.

Figure 4 implies the need for the ability to filter out particular
hosts that may be too small in traffic percentage to be able to be
easily clicked on. In this case, sometimes the hosts will take up
valuable screen space while adding minimum benefit to the user.
This is why we add the Hide Insignificant Hosts checkbox as de-
scribed in Section 5.4.2. Also, Figure 3 shows us only one piece of
the information we would like to display and gives us incentive to
provide the functionality of the color scale as described in Section
5.4.1.

5.3 Views

A local IP address is defined as an IP address that falls within the
group of IP addresses that is associated with the network that is
being monitored. For the purposes of our project, our local IP ad-
dresses are those addresses that belong to Michigan Technological
University. A world IP address is an IP address that is not included
in the set of local IP addresses. We present the different views be-
cause each view allows the treemap to display the data in a different
fashion, thus allowing users to view network traffic data using the
view that is best suited for their needs.

5.3.1 Local

The local view displays all of the hosts that have local IP addresses
whose packets have been captured. We provide this view because
it is important to be able to view the network activity of the hosts
that are utilizing bandwidth, including identifying whether it is sent
or received data. This view is useful because all of the local users’
traffic will be shown in this view, which may be used as a quick
snapshot into how a network’s local users are utilizing bandwidth.
This view is shown in Figure 10.

5.3.2 World

The world view displays all of the hosts that have world IP ad-
dresses whose packets have been captured. We provide this view
because it is important to know what outside IP addresses are being
accessed by the local individuals that are using network resources.
This is useful because unlike the local view, the world view displays
all of the world hosts that the local hosts are communicating with.
For example, if there are world hosts that require monitoring such
as either being prohibited all together or have upper limits on usage
then this view provides a means of detecting the IP addresses or the
amount of bandwidth that is being used to communicate with them.
This view is shown in Figure 5.

Due to security implications, the world view is the default view.
We believed that showing the world view would give a user faster
access to network problems than the local view for problems like
participating in a DDoS, where showing a single world IP with a
more-than-expected amount of traffic would be more useful than
showing hundreds of local users with equal amounts of traffic. Hav-
ing the default view as the local view would prevent a user from
seeing if the local hosts are contributing to such a DDoS type of
assault.

5.3.3 Tunneling

The tunneling view displays either local IP addresses or world IP
addresses depending on the host that is selected. When a host is
selected to tunnel into, the window redraws the list of IP addresses
that are linked by conversations to the selected host. We provide
this view as a means to explore which hosts are connected to other
hosts and to be able to interactively search through the connections

Figure 5: World view without insignificant hosts.

associated between each successive sets of hosts. Successively
clicking on hosts will create a tunnel as you traverse through the
structure. This tunneling functionality is useful because a user can
select any host on the screen and see all of the connections associ-
ated with that host.

Figure 6: Example of Local Hosts in the Tunneling View

For example, starting from the world view, as shown in Figure
5, clicking on a host will bring up a view containing the local hosts
that the clicked host is connected to, as shown in Figure 6. Then
proceeding to click on a host in that view will result in a view con-
taining the world hosts that the local host that was just clicked on is
connected to, as shown in Figure 7.

Also, the Back button is used only with the tunneling function-
ality. It allows a user to back up to the previous level as if the click



Figure 7: Example of World Hosts in the Tunneling View

never happened. Clicking will keep a Tunneling History such that
the Back button will be able to back a user up as many levels as was
clicked, even if the clicks were cyclical.

5.4 Other Features

5.4.1 Color Scale and Changing its Range

An important attribute of network data is the two way communi-
cation. With these conversations between two different hosts, con-
versations can be weighted in three different ways. For example,
consider the two hosts A and B. A could do a majority of the talk-
ing while B just listens. A and B could also do near-equal amounts
of talking, or B could do the majority of the talking while A just
listens. Assume a host that is talking significantly less than it is
listening. If we recall from Section 5.1, the more talking (or up-
loading) is associated with red and listening (or downloading) is
associated with green. This is an important piece of information
that our first spiral treemap iteration was not capable of display-
ing. Therefore, we created the color scale on the right side of our
tool. This can be seen in Figures 8, 9 and 10. The color scale
uses a logarithmic scale to determine the color gradient. Out of
these colors, each host will get the proper color when the treemap
is drawn. However, using a static scale would not be very helpful,
so we allowed a range of 10 orders of magnitude to demonstrate the
difference between the different hosts. This range allows the pos-
sibility of a huge contrast between different hosts that may seem
similar but are very different with respect to the amount of upload
traffic versus the amount of download traffic. Figure 8 shows the
scale with 1 order of magnitude and Figure 9 shows the scale with
10 orders of magnitude.

5.4.2 Hiding Insignificant Hosts

Screen real estate is very important when trying to display the vol-
ume of data that is associated with network traffic. One of the im-
portant aspects was to monitor the percentage of bandwidth usage
to determine network congestion issues or possible threats that may
arise from general use of a network. We found it difficult to moni-
tor if there were many hosts with very little bandwidth percentages.
Therefore, we define insignificance as having an area less than 151
pixels squared or approximately a 12 pixel by 12 pixel box. If the
Hide Insignificant checkbox is checked and if a host has an area that

Figure 8: Color Scaling order of 1.

Figure 9: Color Scaling order of 10.

fulfills the insignificant criteria then the host is considered insignif-
icant and that host will not be drawn. This can be applied to any of
the three possible views. The default action is to hide insignificant
hosts.

5.5 Effectiveness

In terms of stability, the spiral treemap gave us the best compro-
mise between a stable display and reasonable aspect ratios for the
scope of our data. Our data is also ordered by IP address to ease in
searching for a specific IP address. However, our approach was not
perfect. There was no easy way to visualize the changes in the data
without using a contrast treemap [1]. Stability was also an issue
when the change in the number of nodes between display snapshots
was large. Having the list of hosts ordered before drawing helped,



Figure 10: Local view hiding insignificant hosts.

Figure 11: Local view showing insignificant hosts.

but it seemed too difficult to see minor changes within the hosts
displayed. However, the program was developed with the intention
of seeing the largest contributors toward the data rather than the
smallest. More discussion on these can be found in Section 6.

Hiding insignificant hosts helped with cleaning-up the data,
which made viewing the hosts much easier since there was more
room to show more relevant data. Though we wanted to show all of
the data, it was just too difficult to select a host whose area was too
small to click or see. Because of this, we believe this was a good
addition to our design.

Tunneling seemed effective at determining with whom each host
was communicating. It was sometimes confusing to not be able to
tell which host we were currently examining, as that information
does not get displayed in our implementation. Despite this, the

relationships between hosts was still easy to see and follow.

The world and local view was a great tool for a start over feature
when viewing the data. As selecting the World/Local View button
would always bring a user back to the highest overview of hosts,
this proved useful when a user got lost in the hosts.

The ability to change the order of magnitude scale as it applies
to the color scale is especially helpful since a user can better inspect
those hosts that either have relatively equal amounts of upload and
download data or have significantly skewed amounts of upload or
download data. This was justified since users might have difficulty
deciphering two white-looking hosts when 10 orders of magnitude
are shown. Furthermore, users might have difficulty interpreting
two red-looking hosts when only 1 order of magnitude is shown. In
addition to the orders of magnitude selector, the color-pinpointing
of the color scale also significantly enhances comparing the colors
between nodes by actually displaying where a host’s color is located
on the color scale.

6 FUTURE WORK

6.1 Tunneling View History

In addition to just tunneling through hosts to view their connections,
there was a desire to also display the current stack of hosts as a
breadcrumb list or a scrollable list. This would help to keep track
of where the user has clicked and would allow the user to go back
to any point in the selection history.

6.2 Time Window

The program was designed with the intention of utilizing user-
specified time window filtering (via sentences and conversations).
Adding a sliding time window or a user specified start and stop date
to filter the data could be a very useful feature for displaying trends
in data over specific timer periods.

6.3 Resolving IP Addresses to Hostnames

The ability to resolve hostnames proved difficult as there was no
easy means to gain this information due to our implementation. We
had to explicitly reserve our wireless adapter to capture data by dis-
associating it from any network. Therefore, we required another
adapter to resolve IP addresses. Ideally, this functionality should
also be included, especially for world hosts so a user can find rela-
tionships in how their local hosts use the network.

6.4 Improved Stability and Visualizing Changes

Though our spiral treemap has relatively good stability, it is far
from perfect since a host can easily be skewed into a much different
area of the window with very little change in the data. Quantifying
changes in the data is also very difficult without other tools, such as
contrast treemaps [1].

6.5 Domain Groupings

Building on resolving hostnames, grouping hosts of like domains
would be very helpful in the world view to see which organizations
or companies have the most traffic. This would have the added
benefit of making the treemap truly hierarchical, where treemaps
excel.

6.6 More Detailed Rollovers

There are no hard numbers for displaying how much data was ac-
tually transferred in our implementation. Adding in data values
in KB/Kb/MB/Mb, etc. would be useful to see data throughput.
Including information such as IP Addresses (once resolving host-
names is implemented), extra company information, actual usage
percentage, total upload count, total download count, or the num-
ber of hosts in that group (when domain grouping is implemented)
would be beneficial to a user.



7 CONCLUSION

In this paper, we introduced idea of a network monitoring treemap
project. We presented our reasoning for the project, which included
exploring the effectiveness of treemaps as a method to visualize net-
work traffic data. As such, we aim to use a treemap to show network
traffic data in a variety of ways because classifying this data differ-
ently provides different interpretations to yield more valuable in-
formation about a particular network. Overall, the program met its
goals and although the design and implementation had weaknesses,
the program was sound, stable, easy-to-use, and informative.

REFERENCES

[1] Y. Tu and H.-W. Shen. Visualizing changes of hierarchical data using

treemaps. IEEE Transactions on Visualization and Computer Graphics,

13:1286–1293, 2007.


